Christopher Maes

cmmaes@gmail.com (617) 233-1075

Objective

To apply my experience in numerical optimization and linear algebra to interesting applications.

Education

Stanford University	Stanford, CA		
Degree: Ph.D. Computational and Mathematical Engineering	January 2011		
A Regularized Active-set Method for Sparse Convex Quadratic Programming			

Developed QPBLUR, a quadratic programming solver with block-LU updates and regularization. QP-BLUR is used as a subproblem solver in SNOPT, a sequential quadratic programming algorithm for constrained nonlinear optimization.

http://www.stanford.edu/group/SOL/dissertations/maes-thesis.pdf Advisor: Michael Saunders

Massachusetts Institute of Technology	Cambridge, MA
Degree: S.B. Applied Mathematics	June 2005

Work Experience

Gurobi Optimization, Inc.

Senior Software Developer

Developed a MIP heuristic, sparse LU factorization, automatic tuning tool, and MATLAB interface that appeared in versions 5.0 through 6.5 of the Gurobi Optimizer. Updated LP presolve and achieved a 5% performance improvement in the fastest LP solver in the world. Lead the development and launch of the Gurobi Instant Cloud product.

MIT Operations Research Center

Postdoctoral Associate

Developed a large-scale implementation of an MIP model for routing air traffic in the presence of convective weather. Designed algorithms for computing adaptive policies for two-stage linear programming under uncertainty.

Stanford University

Research Assistant

Worked with an interdisciplinary team of mathematicians and systems biologists to devise an optimizationbased model of the metabolic system of unicellular organisms. The team received a three-year grant from the Department of Energy to explore the model's use in biological hydrogen production.

Google Sun	nmer of	Code:	Scilab	Consortium
------------	---------	-------	--------	------------

Open-source developer

Developed SPARTAN, a sparse trust-region algorithm for nonlinear equations for use in the open-source MATLAB clone SCILAB. SPARTAN is designed to solve large systems of nonlinear equations with sparse derivatives.

https://github.com/cmaes/spartan

Cambridge, MA

October 2010 - December 2011

Stanford, CA

January 2008 - August 2010

Palo Alto, CA June 2009 - August 2009

Boston, MA

January 2012 - January 2016

Stanford University	Stanford, CA
Research Assistant	September 2008 - January 2008
Modified PDCO, a primal-dual interior method for convex objective functions, and use sparse symmetric quasi-definite factors of the KH tions. http://www.stanford.edu/group/SOL/software/pdco/	es, to handle nonseparable objective KT system to compute search direc-
Electric Power Research Institute	Palo Alto, CA
Research Assistant	June 2007 - November 2007
Formulated and solved global optimization problems with bilinear of to compute optimal bidding strategies in an electrical power marked	bjectives and equilibrium constraints t.
Wolfram Research	Boston, MA
Research Fellow	July 2006 - September 2006
Constructed numerical analysis demonstrations in MATHEMATICA. Wolfram Alpha.	Developed a statistics module for
Wolfram Research	Champaign, IL
Intern	June 2004 - August 2004

Implemented an add-on package to Mathematica for nonuniform B-Spline interpolation.

Teaching Experience

Parallel Methods in Numerical Analysis: Prof. Juan Alonso	Spring 2009
Introduction to Large-scale Computing in Engineering: Prof. James Lambers	Winter 2008
Numerical Linear Algebra: Prof. Gene Golub	Fall 2007
Constructing Scientific Simulation Codes: Patrick Miller	Spring 2007

Publications

- R. M. T. Fleming, C. M. Maes, M. A. Saunders, Y. Ye, B. Ø. Plasson. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. J. Theoret. Biol. 292, 71–77, 2012.
- [2] C. M. Maes. Optimal Bidding in Power Markets: Test for Bilinear Bilevel Programs. Program on Technology Innovation 1016228, http://www.epriweb.com/public/00000000001016228.pdf EPRI, Electricité de France, 2007.
- [3] C. M. Maes. Reversal Addition Maps. MIT Undergraduate Journal of Mathematics, 7:101–112, 2005.

Programming Languages

C, Python, Javascript, MATLAB, Mathematica, OCAML, Fortran 95, CUDA (NVIDIA's GPU language), Haskell, Perl, Scheme, Intel 8051 Assembly, R.