
CME 342 Final Project
Christopher Maes

Abstract

We implement a method, in CUDA, of performing image colorization. The method relies on a parallel
implementation of preconditioned conjugate gradient. We use this method to solve two linear systems on
two GPUs each of 3 million unknowns in just under 4 minutes. This produces a coloring of an 1050×3360
image (the size of a modern dual screen desktop background) of El Capitan and the lower Yosemite valley.

Suppose we are given a m×n grayscale image, and a collection of colored annotations as shown in Figure 1.

Figure 1: A grayscale image along with color annotations.

We are interested in computing a colorization of the image, that is colored m×n image C. This colorization
should have the property that it respects the user’s color annotations, and that pixels with similar grayscale
values (intensities) should have similar colors.

To make the above colorization properties more precise, we consider each pixel in the image as linked with
its four nearest neighbors, then we wish to find a colorization x that solves the following problem

minimize
x

∑
i∼j cij(xi − xj)2

subject to xi = di i ∈M
(1)

Here we use i ∼ j to denote that pixels i and j are neighbors, or that pixels i and j share an edge. The
weights cij = cji > 0 are a measure of the closeness of the grayscale values gi and gj of pixel i and j. If
gi = gj we want cij to be large, if gi and gj are very different we want cij to be small. To achieve these
properties we use the relation

cij = exp(−β |gi − gj |).

Here β is a free parameter, for all colorizations we take β = 200. Note that we also scale the greyscale values
of the image so the maxij |gi − gj | = 1.

Observe that Problem 1 has a quadratic objective function. If we define the Laplacian matrix L ∈ Rmn×mn

as L = ATCA where A is the edge-node adjacency matrix, and C is a diagonal matrix containing the edge
weights cij , then we have that xTATCAx =

∑
i∼j cij(xi − xj)2. Thus we can rewrite Problem 1 in matrix

form as
minimize 1

2x
TLx

subject to xm = d
(2)

Here L is the Laplacian matrix for the image, xm is the set of unknowns corresponding to marked pixels,
and d is the vector of annotated values obtained from the user. Observe that if P is a permutation that
orders x so that the marked and unmarked unknowns are grouped, such that

Px =
[
xm

xu

]

Christopher Maes CME 342 Final Project June 11, 2008

Then we have that

1
2
xTLx =

1
2
xTPT (PLPT)Px =

1
2
[
xT

m xT
u

] [Lm RT

R Lu

] [
xm

xu

]
with PLPT ≡

[
Lm RT

R Lu

]
.

Here we have that Lu = LT
u � 0. Since the values of the variables xm are fixed (xm = d), we need only

optimize over the variables xu. Thus we can solve the unconstrained problem

minimize
xu

F (xu) =
1
2
xT

uLuxu + xmR
Txu

Since Lu � 0, the unique minimizer x?
u is characterized by∇F (x?

u) = 0. We have that∇F (xu) = Luxu+Rxm.
Thus we seek to solve the linear symmetric positive-definite system

Luxu = −Rd. (3)

In fact we have to solve two such systems, with two different right-hand sides d1 and d2 (but the same
cofficients Lu) since the color annotations come in two different components. Figure 2 shows the different
color annotation components.

Figure 2: The grayscale image (the Y luma component), the annotated I chrominance component, and the
annotated Q chrominance component.

Note that because we consider each pixel as linked with its four nearest neighbors Lu is pentadiagonal.
We could solve (3) with a sparse direct method, for instance compuating the sparse Cholesky factorization
Lu = RT

uRu. However as m and n get bigger the amount of fill in of the Cholesky factor Ru makes the
memory requirements too expensive.

Thus, we choose to solve (3) via an iterative method: preconditioned conjugate gradient (PCG). PCG solves
the system Ax = b when A is symmetric positive-definite, by solving the equivalent system M−1Ax = M−1b.
The number of iterations of PCG depends on the distribution of the eigenvalues of M−1A. For PCG to be
computationally efficient a good preconditioner M must be found. Several papers have considered advanced
preconditioners for this problem; these preconditioners often have a multigrid flavor and try to take into
account the annotations and grayscale properties of the image. Implementing one of these preconditioners
is beyond the scope of this work. Instead, for this work, we use a simple preconditioner of M = diag(Lu).

A sample implementation of PCG is given in Algorithm 1. Note that the main work involved in PCG is the
computation of the matrix vector product w = Ap. We present four implementations of the above algorithm:
a serial implementation, a parallel matrix-vector product but serial PCG implementation, an unoptimized
single GPU parallel PCG implementation, and an optimized multi-GPU parallel PCG implementation.

The L operator

Although, the matrices L and Lu are pentadiagonal, constructing, storing, and reloading the diagonals of
these matrices would be inefficient in terms of computation, storage, and memory access. However, given

2

Christopher Maes CME 342 Final Project June 11, 2008

Algorithm 1 Precondition Conjugate Gradient
1: x0 = 0
2: r0 = b
3: z0 = M−1r0
4: p0 = z0
5: ρ0 = rT

0 z0

6: for k = 0, 1, . . ., until
√
rT
k rk < ε(1 + ‖ b ‖) do

7: w = Apk

8: γ = pT
kw

9: α = ρk/γ
10: xk+1 = xk + αpk

11: rk+1 = rk − αw
12: Solve Mzk+1 = rk+1

13: ρk+1 = rT
j+1zk+1

14: β = ρk+1/ρk

15: pk+1 = zk+1 + βkpk

16: end for

the original grayscale image computing the matrix-vector product y = Lx is quite simple and efficient.
Therefore, we will perform all our computations without forming the matrices L and Lu. To emphasize this
we will use the notation y = L(x) to denote the fast matrix-vector product operator.

We will show how to use the L operator to compute the right-hand size b = −Rd, and to compute matrix-
vector products yu = Luxu. Observe that if we set xu = 0 and xm = d then we have that

xd = PT

[
d
0

]
and so

[
ym

yu

]
= PT

[
0

RT d

]
= L(xd).

So we can easily extract b from the unmarked components of L(xd). Also observe that if we set xm = 0 then
we have that

x = PT

[
0
xu

]
and so

[
ym

yu

]
= PT

[
RTxu

Luxu

]
= L(x).

So we can easily extract yu = Luxu from the unmarked components of L(x). In fact, for our purposes, since
xm is fixed as xm = d, we can ignore the components ym. We can easily construct a operator L̃ that always
sets ym = 0; this will be important in our parallel implementation of PCG.

Serial Implementation

We first implement a serial version of PCG and our colorization method in C based off the authors Matlab
implementation. If our original image is m × n, then ntot = mn, nm is the number of annotations, and
nu, the number of annotations is equal to ntot − nm. For ease of implementation in this serial version
of PCG we work with vectors x, p, w, r, z ∈ Rnu . To use the matrix-vector product operator L we must
expand these vectors to Rntot by placing zeros in the annotated components. When we compute a vector
y = L(x), we must also remove the annotated components in y ∈ Rntot to get a vector in Rnm . Other than
these operatations the heart of the serial implementation of the colorization method is a straight-forward
implementation of the PCG algorithm already given in Algorithm 1.

We use optimized BLAS operations to implement the level 1 linear algebra operations in PCG. Lines 5, 8,
and 13 of the algorithm utilize the sdot subroutine (note although the operands are single precision that the
summation is accumulated in double precision). Lines 10 and 11 use the saxpy subroutine. Line 15, which
isn’t quite in the form of a saxpy (since your multiplying p by β and then storing the result back into p)
requires the sscal routine, followed by a saxpy. Line 6 uses snrm2.

3

Christopher Maes CME 342 Final Project June 11, 2008

Since M is a diagonal matrix we implement the solve Mz = r in Line 13 by simply performing the compo-
nentwise scaling z = r./d (to borrow Matlab notation).

Note that we require two solves Lux
(i)
u = di, i = 1, 2. This serial version contains two routines, one which

performs the solves in order (first solving for x(1)
u then solving for x(2)

u) and in a single shot, and another
version that interleaves the iterations of conjugate gradient for each of the right-hand sides. This last routines
allows us to perform an animation of the colorization.

Parallel Matrix-vector product implementation

Our first step toward a parallel implementation for the GPU is parallelizing the matrix-vector operator L.
We implement this operator as a single CUDA kernel. We assign a single thread on the GPU to each pixel in
the grayscale image. Each thread reads in the grayscale value of its pixel, as well as its four neighbors, and
uses this to compute the edge weights cij . Each thread must also read in the values of the vector x ∈ Rntot

corresponding to these five pixels. Suppose we are the ith thread then

di =
∑
j∼i

cij =
∑
j∼i

exp(−β |gi − gj |)

and the ith component of the vector y = L(x) is given by

yi = dixi −
∑
j∼i

cijxj .

Thus we see that each thread requires 10 fetches from global memory and performs a single store to global
memory. We can speed things up by having each thread in a block pull in its value of gi and xi and store
them in shared memory, so these values can be reused by other threads in the block. We will also need to pull
in the values of gi and xi surrounding the boundary of the block. Thus a thread on the boundary must (in
the worst case) perform 6 fetches from global memory. Considering the discrepancy between global memory
access and floating point computations, this makes the matrix-vector product kernel memory bound.

For this implementation the only computation we perform on the GPU is this matrix-vector product. Thus,
on each iteration of PCG we take p ∈ Rnu in Line 11, add zeros to form a vector pfull ∈ Rntot , CudaMemcpy
pfull to the GPU, compute wfull = L(pfull) on the GPU, CudaMemcpy wfull back to the host, and remove the
zeros to get w ∈ Rnu . All other operations in PCG are performed using the BLAS on the host. Nevertheless,
we see a factor of 10 reduction in the time required to perform our colorization method (using the example
in Figure 1).

Parallel PCG implementation: single GPU

The next step is moving the level-1 BLAS operations onto the GPU. This means performing parallel reduc-
tions for the dot products rT r, γ = pTw, ρ = rT z in Lines 6, 8, and 13. As well as vector operations for the
saxpy’s on Lines 10 and 11, the almost saxpy on Line 15 and the scaling z = r./d on Line 12.

In the serial implementation of PCG we worked with vectors in Rnu , moving to and from vectors in Rntot

only when computing L(x). However, the indexing involved with these conversions would be difficult to
implement in parallel and would result in uncoalesced reads and writes. Thus in our parallel implementation
of PCG on the GPU we work entirely with vectors in Rntot . An inspection of Algorithm 1 will confirm
that provided we start with a vector b whose components corresponding to annotated variables are zero, all
subsequent vectors produced by the algorithm will also have zeros in the annotated components. Provided
that w = L(p) is zeroed appropriately or the operator w = L̃(p) is used. If the annotated components in the
vectors p, r, w and z are zero then the dot products γ and ρ will be the same as if we were working in the

4

Christopher Maes CME 342 Final Project June 11, 2008

lower dimension Rnu . Thus the iterates xk of PCG in the expanded space Rntot will be identical to those
computed in the reduced space Rnu .

Note that instead of performing the basic BLAS vector operations of saxpy’s and sscal’s, we can construct
kernels specifically tuned to PCG. Since the most expensive operation on the GPU is moving data onto chip
we constructed these kernels to make the most of the data once we had pulled it into a register.

For example we implement a single kernel to perform Lines 11 and 12 and the first step in the reduction for
Lines 13 and 6. Each thread in this kernel is assigned an index j of the vectors w, r and z and the vector
d = diag(Lu). Each thread loads wj , rj and dj and then does the operatations

rj ← rj − αwj

zj ← rj/dj

fj ← rjzj

hj ← rjrj

The vectors f and h are local to a block of threads and stored in shared memory on chip. Once all threads in
a block are done with the above operatations they cooperate to compute the partial sums ui =

∑
j in block i fi

and vi =
∑

j in block i hj . The vector u contains the partial sums after the first step in the reduction for
ρk+1 = rT

k+1zk+1 and the vector v contains the partial sums after the first step in the reduction for rT
k+1rk+1.

With this implementation of PCG we can now stay almost entirely on the GPU. There is no need to transfer
vectors back and forth from the host to the device. However, upon the completion of each iteration of PCG
we transfer a small set of scalars back to host, to decide if we should continue with the next iteration and
to report progress information to the user. Finally since all data is now stored on the GPU, we can perform
the final color conversion from Y IQ to RGB on the device. If the GPU is connected directly to a display
we can even blit the final texture to the screen without having to transfer back to the host.

By moving the Level-1 BLAS operations to the GPU, and avoiding transfers from the host to the device, we
see a factor of four reduction in the time required to perform our colorization method.

Parallel PCG implementation: multi-GPU

Finally, in one sense our colorization method is embarrassingly parallel. We need to do two entirely separate
and independent solves Lux

(1)
u = d1 and Lux

(2)
u = d2. This is the prefect use of a mult-GPU system. By

using two GPUs to perform both solves in parallel we see a factor of two reduction in the time required to
perform our colorization method.

Numerical Results

We use four sample images of increasing size to test the implementations: the child image already shown in
Figure 1, the Matlab clown with annotations taken from the original color image, the author’s annotated
version of Rosenfeld’s photograph Hoag’s Outboard, originally taken in 1925 and for which no color infor-
mation exists, shown in Figure 5, and a part of a 360 ◦ degree panorama taken by the author in April of
2008 on top of Sentinel dome in Yosemite looking back into the Yosemite Valley and El Capitan with color
annotation from the original, shown in Figure 6. Timing information is shown in Table 1. Timings were
performed on a compute node with two Quadro FX 5600 GPUs.

Further Work

A year ago the author contributed to a plugin for the open-source photoshop clone The Gimp that imple-
mented a similar method of colorization. This plugin was abandoned by The Gimp community because

5

Christopher Maes CME 342 Final Project June 11, 2008

Table 1: Timings for the four programs on the four sample images. The † indicates timing information for
only 3000 iterations.

Image Size ntot nu Serial Parallel L(x) Parallel PCG Multi-GPU
child 264× 320 84480 67076 123s 13 3.8 1.62
clown 200× 320 64000 49381 263 28 9.2 3.6
hoag 639× 800 511200 484414 927† 560 83 35
sentinel 1050× 3360 3528000 2164668 NA NA 589 230

of the dependencies on the sparse linear algebra package UMFPACK required to solve the large linear
systems the colorization method produces. This implementation of parallel PCG might make colorization
computationally feasible; provided a good preconditioner can be found.

Test Images

Figure 3: Child Image

Figure 4: Clown image

6

Christopher Maes CME 342 Final Project June 11, 2008

Figure 5: Hoag’s outboard

Figure 6: Panorama from Sentinel Dome

7

