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1 Introduction

Until recently the electrical power industry was a vertically integrated structure controlled

by government regulations. In order to promote a more competitive environment, numerous

countries have moved to a deregulated electrical power industry. This deregulation has

caused the separation of electrical power generation, transmission, distribution, and retail.

The structure of this new power system is based on a market model to effect the sale of

electricity using supply and demand to set the price.

The market model and mechanism by which prices are set and electricity dispatched can be

described by the primal and dual pair of linear programs:

minimize
q

pT q

subject to Aq = b

0 ≤ q

maximize
π,s

bT
π

subject to AT
π + s = p

0 ≤ s

Here p is a vector of electric power bid prices, q is a vector of electric power bid quantities,

and π is a vector of market prices. From the solution vectors q⋆ and π
⋆ of these linear

programs it is possible to calculate the market clearing quantity and market clearing price.

In this work we consider problems in which a firm or single entity in the market seeks to

maximize its profit subject to the constraint that the market is in equilibrium, or that q, π

and s are optimal vectors for the above linear programs. Thus, we consider problems in the

form

maximize
p,b

f(p,q⋆, π⋆)

subject to

minimize
q

pT q

subject to Aq = b

0 ≤ q

maximize
π,s

bT
π

subject to AT
π + s = p

0 ≤ s

.

(1.1)
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Here, f is a scalar-valued bilinear function that gives the profit of a firm or single entity in

the market. Note the bilevel nature of (1.1), in which the data p and b of the lower-level

linear programs are variables in the upper-level program, and the variables q⋆ and π
⋆ of the

upper-level program are constrained to be solutions of the lower-level linear programs.

By writing out the KKT optimality conditions of the linear program we can transform (1.1)

into the following nonlinear program:

maximize
p,q,b,π,s

f(p,q, π)

subject to Aq = b, AT
π + s = p (1.2)

qT s = 0 (1.3)

0 ≤ q, s. (1.4)

Constraints (1.2) and (1.4) require q, π and s to be primal and dual feasible. Together

constraints (1.3) and (1.4) form an equilibrium constraint, or a complementarity condition,

that requires the product qisi = 0 for all i. This equilibrium constraint makes the above

program part of a special class of optimization problems called Mathematical Programs

with Equilibrium Constraints (MPECs) [Z.Q96]. However, in an effort to be more precise

we prefer the name Bilinear Bilevel Programs (BLBPs). In this work we attempt to solve

these BLBPs by solving the associated nonlinear program.

In Section 2 we describe the market model, the mechanisms by which the market sets prices

and dispatches electricity and how these can be formulated as a pair of primal and dual linear

programs. In Section 3 we consider a single generation firm operating in a electrical power

market and formulate a BLBP for the firm’s offer into the market to maximize the firm’s

profit. In Section 4 we consider a small-scale electrical transmission network and formulate

a similar BLBP for a vertically-integrated utility firm operating in this network. In Section

5 we construct a set of BLBPs arising from this electrical transmission network. In Section

2
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6 we analyze the ability of two nonlinear solvers to solve this set of BLBPs. We conclude,

in Section 7, by discussing the inherit difficulties in solving BLBPs.

2 The Pool Market Model

We consider an electricity market operating under the pool market model [CEA02]. In the

pool market model, an overseeing entity, the pool operator, receives electricity transaction

bids and offers from consumers and suppliers. Once all bids and offers have been received

the pool operator determines the market clearing quantity (MCQ) and market clearing price

(MCP) to maximize the social welfare. Electrical power is then dispatched from suppliers

to consumers according to the market clearing price.

A consumer is an entity that wishes to purchase electrical power; a consumer represents a

load in the power system network. An example of a consumer is a local power company which

supplies electricity directly to homes and businesses. A supplier is an entity that produces

electricity; a supplier represents a generator in the power system network. An example of a

supplier is a company that owns and operates a hydroelectric power plant. Consumers and

suppliers are connected to each other via the transmission system network.

A consumer places a bid to buy a quantity of electrical power, expressed in Megawatt hours

(MWh), at a particular price per MWh. Similarly, a supplier places an offer to sell a

quantity of power at a particular price. Both bids and offers are defined in terms of a price

and maximum quantity pair (p $/MWh, q̄ MWh).

The current bids and offers in the pool market model are not public knowledge. A single

consumer or supplier will know only its own bid or offer, not those of the other entities in

the market. Only the pool operator has access to all of the bids and offers.

3
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Consumers and suppliers may not only submit single price quantity pairs, but a set of price

quantity pairs, with each pair corresponding to a different demand or generation resource.

These set of price quantity pairs is called bid and offer curves. These pairs are arranged in

increasing order of offer price for suppliers, and decreasing order of bid price for consumers.

The pool operator aggregates these offer and bid curves to construct a single supply and

demand curve for the entire market (Figure 2.1). The supply and demand curves s(q) and

d(q) are piecewise constant functions defined as follows:

s(q) =







pj1 q ∈ [0, q̄j1]

pj2 q ∈ (q̄j1, q̄j2 + q̄j1]

...
...

pj|S|
q ∈

(
∑

j∈S q̄j − q̄j|S|−1
,
∑

j∈S q̄j

]

d(q) =







pi1 q ∈ [0, q̄i1 ]

pi2 q ∈ (q̄i1 , q̄i2 + q̄i1 ]

...
...

pi|C| q ∈
(
∑

i∈C q̄i − q̄i|C|−1
,
∑

i∈C q̄i

]

Here S is the set of all suppliers and C is the set of all consumers, The indices {jk}
|S|
k=1 and

{ik}
|C|
k=1 are defined by the price orderings pj1 ≤ pj2 ≤ · · · ≤ pj|S|

, and pi1 ≤ pi2 ≤ · · · ≤ pi|C| .

Once the supply and demand curves are constructed, the pool operator determines a single

market clearing quantity (in MWh) and market clearing price (in $/MWh). The market

clearing quantity is the total amount of electric power transfered from suppliers to consumers.

The market clearing price is the price per MWh charged for the transferred electric power.

The MCQ and MCP are defined as the coordinates of the point of intersection of the supply

and demand curves (Figure 2.1). Mathematically, the MCP and MCQ can be defined via

the solution to a linear program that seeks to maximize the social welfare.

The social welfare is defined as the sum of the total consumer profit and the total supplier

profit. Suppose that consumers and suppliers submit their respective bids and offers accord-

ing to their operating costs. Then, the profit of an individual consumer i is (pi − MCP)qi;

since consumer i was willing to pay pi $/MWh for qi MWh of electricity but instead only

4
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paid MCP $/MWh. Similarly, the profit of an individual supplier j is (MCP − pj)qj; since

supplier j received MCP $/MWh for qj MWh of electricity that cost only pj $/MWh to

generate. Summing over all consumers and suppliers we arrive at the social welfare

∑

i∈C

(pi − MCP)qi +
∑

j∈S

(MCP − pj)qj =
∑

i∈C

piqi −
∑

j∈S

pjqj + MCP

(
∑

j∈S

qj −
∑

i∈C

qj

)

If we impose the additional constraint the supply must equal demand, or that
∑

i∈C qi =

∑

j∈S qj we arrive at the following equation:

social welfare =
∑

i∈C

piqi −
∑

j∈S

pjqj

Graphically, the social welfare corresponds to area between the demand and supply curves

(shown hatched in Figure 2.1). This area is the sum of the consumer profit (the light gray

region) and the supplier profit (the dark gray region).

P
ri

ce

Cumulative
Quantity

MCQ

MCP

Figure 2.1: Supply (thick) and Demand (thin) curves for the pool market. The point of

intersection represents the unique (MCQ, MCP).

To obtain the MCQ the pool operator solves the linear program

(P )

max
qc,qs

pT
c qc − pT

s qs

subject to eTqc − eTqs ≤ 0 : π

0 ≤ qc ≤ q̄c : zc

0 ≤ qs ≤ q̄s : zs

(2.1)
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The objective of (P) is to maximize the social welfare. The primal decision variables qc ∈R|C| and qs ∈ R|S| represent actual quantities of power exchanged and are portions of

the maximum quantities of consumer bids and a supplier offers. Hence, the constraints

0 ≤ qs ≤ q̄s and 0 ≤ qc ≤ q̄c. Here the upper bounds q̄c ∈ R|C| and q̄s ∈ R|S| are maximum

quantity vectors; individual components of these vectors come from the maximum quantities,

q̄, specified in consumer bids and supplier offers. These upper bounds, q̄c and q̄s, are thus

data to the primal program. Here pc ∈ R|C| and ps ∈ R|S| are price vectors; individual

components of these vectors correspond to consumer bid, and supplier offer, prices. Since

the price p of a consumer’s bid or a supplier’s offer is fixed pc and ps are data to the primal

program. This model of a fixed price but varying quantity is displayed graphically in the

piecewise constant supply and demand curves shown in Figure 2.1.

We require that the market clears, or that the total quantity supplied is equal to the total

demand. This is represented in the constraint eT qc − eTqs = 0, here e is a vector of all

ones. This constraint requires that supply
∑

j∈S qj equals demand
∑

i∈C qi. In (2.1) we

have replaced eTqc − eTqs = 0 by the constraint eT qc − eT qs ≤ 0; at the optimal solution

this constraint will hold with equality. The inequality forces the Lagrange multiplier, π,

associated with this constraint to be nonnegative. This is important, for, as we shall see

later, π represents a price.

From the solution to the primal program, q⋆
c and q⋆

s, it is possible to determine the market

clearing quantity, since MCQ =
∑

j∈S q⋆
j = eTq⋆

s = eTq⋆
c .

6
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To determine the market clearing price we turn to (D) the dual of (P).

(D)

min
π,zc,zs

q̄T
c zc + q̄T

s zs

subject to πe + zc ≥ pc : qc

−πe + zs ≥ −ps : qs

0 ≤ zc, zs, π

(2.2)

Let π⋆, z⋆
c , z

⋆
s be an optimal solution to (D). Then π⋆ ∈ R is a market clearing price, while

z⋆
c ∈ R|C| and z⋆

s ∈ R|S| represent the shadow prices associated with the maximum quantity

constraints qc ≤ q̄c and qs ≤ q̄s respectively.

When the supply and demand curves intersect at a single point the MCQ and MCP are

uniquely determined (this can be seen in Figure 2.2a). When this occurs the solutions to

the primal and dual linear programs are unique. If, however, the supply and demand curves

intersect at multiple points, then either the MCQ or the MCP is not uniquely determined

(as can be seen in Figure 2.2b-c); this corresponds to multiple solutions in the primal or the

dual linear program. In these cases the pool operator must choose a unique (MCQ,MCP)

pair. When the MCQ can take on a range of values the pool operator chooses the MCQ to

maximize the quantity sold (Figure 2.2b). When the MCP can take on a range of values the

pool operator chooses the MCP to minimize price (Figure 2.2c).

P
ri

ce

Quantity

(a) (b) (c)

Figure 2.2: The three different types of supply (blue) and demand (red) curve intersections.

The set of acceptable (MCQ,MCP) pairs is shown in black, the chosen solution is crossed.

Once the MCQ = eTq⋆
c and MCP = π⋆ have been determined, consumers pay a total

7
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(MCP · MCQ) = π⋆eTq⋆
c dollars and receive a total of MCQ MWh of power. If consumer

i ∈ C placed a bid (pi, q̄i) whose corresponding quantity q⋆
i > 0, then consumer i pays a total

of π⋆q⋆
i dollars and receives q⋆

i MWh of power. If supplier j ∈ S placed an offer (pj, q̄j) whose

corresponding quantity q⋆
j > 0, then supplier j receives π⋆q⋆

j dollars and supplies q⋆
j MWh of

power.

3 The Single Supplier Problem

We have discussed how prices are set and electricity is dispatched, in a pool market, given

a set of bids and offers. These bids and offers are placed into the market by individual

consumers and suppliers. We refer to an individual consumer or supplier with control over

a single bid or offer as a market entity. Each market entity faces the problem of choosing its

bid or offer to maximize its profit.

This problem can be modeled as an optimization problem where we remove the entity from

the market, with all other consumer bids and supplier offers fixed, and choose that entity’s

price max quantity pair (pk, q̄k) to optimize its profit. Recall that the pool operator chooses

the MCQ and MCP to maximize the social welfare based on bids and offers submitted by

consumers and suppliers, assuming that these bids and offers represent true marginal costs.

However, consumers and suppliers are allowed to choose their own bids and offers. By varying

its bid or offer from marginal cost a firm may be able to increase its profit [HMP00].

Consider a single supplier k ∈ S, and let ck, in $/MWh, represent the true marginal cost

of supplier k. That is, it costs supplier k, ckq dollars to generate q MWh of power. We

will assume that there exists a quantity of power, qmax
k , that is an upper bound on the

total amount of power supplier k can produce. This upper bound arises from the physical

limitations of power generation; for example it may be impossible to generate more than

8
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qmax
k with a supplier’s nuclear power plant.

The supplier wishes to maximize profit, or the revenue (MCP · q⋆
k) = π⋆q⋆

k minus the cost

ckq
⋆
k. Here we see that the profit of supplier k depends on the solutions to (2.1) and (2.2). In

particular, it depends on the MCP, π⋆, and the actual quantity, q⋆
k, that the pool operator

requests supplier k to produce. These values in turn depend on the bids and offers placed

by other consumers and suppliers. Unfortunately, these bids and offers are not known to

supplier k. For this work, however, we will assume that supplier k knows, or is able to

produce an estimate of, the other consumer and supplier bids and offers. That is, we assume

that the price and max quantity vectors ps, q̄s ∈ R|S|−1 of the other suppliers and the price

and max quantity vectors pc, q̄c ∈ R|C| of the consumers are known.

With this information, the Single Supplier Problem is to optimize the profit of supplier

k subject to the constraint that the market is in equilibrium. The equilibrium constraint

requires us to incorporate the optimality conditions of the pool market primal and dual

linear programs. This yields the following problem:

maximize
pk,q̄k,qkqc,qs,π,zc,zs,ξ

πqk − ckqk

subject to eTqc − eTqs − qk ≤ 0

0 ≤ qk ≤ q̄k, −π + ξ ≥ −pk

0 ≤ qc ≤ q̄c, πe + zc ≥ pc

0 ≤ qs ≤ q̄s, −πe + zs ≥ −ps

0 ≤ q̄k ≤ qmax
k zc, zs, ξ, π ≥ 0

pT
c qc − pT

s qs − pkqk ≥ q̄T
c zc + q̄T

s zs + q̄kξ

(3.1)

Here ξ ∈ R is the Lagrange multiplier or dual variable associated with the constraint qk ≤

q̄k. Note that pk, q̄k ∈ R are decision variables and thus supplier k’s offer (pk, q̄k) is to

be determined. The marginal cost of generating power, ck, and the maximum generation

9
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capacity, qmax
k , are data to the problem along with the vectors, pc,ps, q̄c and q̄s.

The presence of the term πqk makes the objective function bilinear. Note that this a bilinear

bilevel program. In fact, this is the simplest bilinear bilevel program arising from the electric

power market model.

A graphical representation of Problem (3.1) is shown in Figure 3.1. The residual demand

curve is constructed by grouping together all other consumers and suppliers into a single

entity that has a demand for supplier k’s power. For supply to equal demand supplier

k must produce a quantity of electrical power at a price on this residual demand curve.

Different points on this residual demand curve will yield different amounts of profit. The

point which yields the maximum profit is the optimal offer (p⋆
k, q̄

⋆
k) for supplier k.

pk

qk

Optimal Offer (q̄⋆
k, p

⋆
k)

Offer Curve

Figure 3.1: Residual demand curve (red) and lines of isoprofit (dashed) for the BLBP.

The solution of the Single Supplier Problem yields the optimal offer (p⋆
k, q̄

⋆
k) for supplier k.

Unfortunately, this is a single point solution. Supplier’s often submit a set of price max

quantity pairs into the pool market. These sets of offers give rise to offer curves. Let ok(·)

denote the offer curve for supplier k. Any offer curve ok which satisfies ok(q̄
⋆
k) = p⋆

k will yield

the optimal profit for supplier k. However, different offer curves can yield different amounts

of profit, especially in the presence of uncertainty regarding the other firms’ bids and offers.

The choice of an offer curve ok(·) that minimizes risk is performed separately after solving

the Single Supplier Problem, and is beyond the scope of this work.

10
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4 The Transmission Incentive Problem

4.1 The Two-Node Network Market Model

We now consider a problem where the structure of the transmission network comes into play

[Ent07]. A two-node network is shown in Figure 4.1, where each node represents a different

physical location. There are four separate entities in the market: Supplier 1 and Demand 1

located at Node 1, and Supplier 2 and Demand 2 located at Node 2. Demand 1 and Demand

2 receive payment from customers at nodes 1 and 2 and place bids into the pool market

to buy electrical power to supply to their customers. Supplier 1 and Supplier 2 generate

electricity and place offers into the pool market to sell electrical power. In addition, nodes

1 and 2 are connected together by means of a transmission line.

Node 1 Node 2
t

S1 S2

D1 D2

π1 π2

Figure 4.1: A diagram of the two-node network.

Although this two-node network may seem overly simple it actually models several impor-

tant dynamics arising in practice. Historically electric power generators were built close to

city centers (in this model Node 2)[JT00]. However, as generators became larger, urban

sites became scarce. This, coupled with improvements in transmission technology, caused

newer, more efficient generators, to be sited away from heavy load centers[JT00]. In this

model the more efficient generators are located at Node 1. There are numerous examples

of electric power networks, and sub-networks in California, England, Argentina, Chile, and

New Zealand that have similar properties to this two-node network model [JT00].

11
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Since nodes 1 and 2 are physically separated we will treat the electrical power at each of

these nodes as separate products. The price of electricity at Node 1 is π1 $/MWh and the

price of electricity at Node 2 is π2 $/MWh. Each of the suppliers generate enough electricity

to meet the demand of the local market, however, Supplier 1 has the ability to generate

electricity at lower prices than Supplier 2. Neither supplier has enough capacity to meet the

demand of the entire market. Since Supplier 1 can generate cheaper electricity than Supplier

2, we expect that π1 ≤ π2. Thus, it might be advantageous to move energy from Node 1 to

Node 2 along the transmission line.

We will denote the quantity of energy that flows across this transmission line as t and assume

there is a maximum transmission capacity of t̄. The transmission line is uni-directional;

energy can only flow from Node 1 to Node 2. The owner of the transmission line receives a

congestion fee for transmitting t MWh across the transmission line. The fee is based on the

differences in the prices π1 and π2 and is (π2 − π1)t dollars. In this model we will assume

that there is no cost to the transmission line owner to transmit energy, and that there is no

power loss due to transmission.

Demand 1 and Demand 2 each submit bids (pDk
, q̄Dk

), k = 1, 2 into the market. In this

model Supplier 1 and Supplier 2 both control multiple generation resources, and thus will

submit multiple offers into the market.

Recall that the social welfare is the sum of total consumer profit and the total supplier profit.

The total consumer profit is

(pD1
− π1)qD1

+ (pD2
− π2)qD2

and the total supplier profit due to generation is

∑

i∈S1

(π1 − pi)qi +
∑

i∈S2

(π2 − pi)qi.

12
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Here S1 and S2 are sets that index the generation resources controlled by Supplier 1 and

Supplier 2.

We can also think of the transmission line owner as supplier of transmission. Since there is no

cost to produce transmission, the transmission supplier’s profit is just its revenue (π2 −π1)t.

Thus, the social welfare is given by

(pD1
− π1)qD1

+ (pD2
− π2)qD2

+
∑

i∈S1

(π1 − pi)qi +
∑

i∈S2

(π2 − pi)qi + (π2 − π1)t

Rearranging this we have that

social welfare = pD1
qD1

+ pD2
qD2

−
∑

i∈S1

piqi −
∑

i∈S2

piqi

+ π1

(
∑

i∈S1

qi − qD1
− t

)

+ π2

(
∑

i∈S2

qi − qD2
+ t

)

.

When we require that supply equal demand at each of the nodes, or that

∑

i∈S1

qi − t = qD1
and

∑

i∈S2

qi + t = qD2
,

we arrive at the following equation for the social welfare

social welfare = pD1
qD1

+ pD2
qD2

−
∑

i∈S1

piqi −
∑

i∈S2

piqi.

Thus, the market clearing linear program has the form

maximize
qD1

,qD2
,qS1

,qS2
,t

pD1
qD1

+ pD2
qD2

− pT
S1

qS1
− pT

S2
qS2

subject to −eT qS1
+ t + qD1

≤ 0 : π1

−eT qS2
− t + qD2

≤ 0 : π2

0 ≤ qD1
≤ q̄D1

: ξD1

0 ≤ qD2
≤ q̄D2

: ξD2

0 ≤ qS1
≤ q̄S1

: zS1

0 ≤ qS2
≤ q̄S2

: zS2

0 ≤ t ≤ t̄ : πt

(4.1)
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The objective of this linear program is to maximize the social welfare. Here pS1
, q̄S1

∈ R|S1|

and pS2
, q̄S2

∈ R|S2| are the price and max quantity vectors for Supplier 1 and Supplier 2

respectively; the individual components of these vectors are the price max quantity pairs

(pi, q̄i). These vectors are the problem data.

Note that we have transformed the two equality constraints, which ensure supply equals

demand at each node,

eTqS1
− t − qD1

= 0

eTqS2
+ t − qD2

= 0







into







−eTqS1
+ t + qD1

≤ 0

−eTqS2
− t + qD2

≤ 0
.

This transformation ensures that the dual variables associated with these constraint, π1 and

π2, are nonnegative. This is important as π1 and π2 are the market clearing prices at Node

1 and Node 2.

The dual of (4.1) is then

minimize
π1,π2,ξD1

,ξD2
,zS1

,zS2
,πt

q̄D1
ξD1

+ q̄D2
ξD2

+q̄T
S1

zS1
+ q̄T

S2
zS2

+ t̄πt

subject to π1 + ξD1
≥ pD1

: qD1

π2 + ξD2
≥ pD2

: qD2

−π1e + zS1
≥ −pS1

: qS1

−π2e + zS2
≥ −pS2

: qS2

πt ≥ π2 − π1 : t

π1, π2 ≥ 0

ξD1
, ξD2

, zS1
, zS2

, πt ≥ 0

(4.2)

Here, again, the variables q̄D1
, q̄D2

∈ R, q̄S1
∈ R|S1|, q̄S2

∈ R|S2| and t̄ ∈ R represent max-

imum quantities of electrical power. These quantities, along with the prices pD1
, pD2

∈ R
and pS1

∈ R|S|
1 ,pS2

∈ R|S|
2, are problem data.

14
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The variables ξD1
and ξD2

are the shadow prices for Demand 1 and Demand 2. Suppose

that the bid of Demand 1 is partially rejected, and so we have qD1
6= q̄D1

. This implies that

the dual variable ξD1
= 0, and thus the constraint π1 + ξD1

≥ pD1
becomes π1 ≥ pD1

. Note

that this is when we would reject a bid; when the bid price pD1
< π1. Thus the constraints

π1 + ξD1
≥ pD1

and π2 + ξD2
≥ pD2

ensure that for those demand bids accepted πi ≤ pDi
.

Similarly, the variables zS1
∈ R|S1| and zS2

∈ R|S2| are the shadow prices for Supplier 1 and

Supplier 2 on the constraints qS1
≤ q̄S1

and qS2
≤ q̄S2

. Suppose that the offer of Supplier

1 was rejected, and so we have qS1
6= q̄S1

. This implies that the dual variable zS1
= 0, and

thus the constraint −π1e + zS1
≥ −pS1

becomes −π1e ≥ −pS1
or π1e ≤ pS1

. Note that

this is when we would reject an offer; when the offer price pS1
> π1e. Thus the constraints

−π1e + zS1
≥ −pS1

and −π2e + zS2
≥ −pS2

ensure that for those supplier offers accepted

pSi
≤ πie. Here, for ease of notation, we have used vector inequalities to describe a collection

of scalar inequalities.

The variable πt is the price of transmission. To see this, note that πt ≥ π2 − π1. But,

since πt ≥ 0 and t̄ ≥ 0, and part of the dual objective is to minimize the quantity t̄πt, the

constraint will be on its bound, with πt = π2−π1. This is exactly the marginal price charged

by the transmission line owner for transmission.

4.1.1 Experimental Setup

So far the market model of the two-node network has been reasonably general. We have not

specified any values for quantities of electricity or for marginal prices in the market—other

than to say that we expect the price of electricity at Node 1 will be less than that at Node 2.

Now we specify a particular instance of the two-node network by providing concrete values

for the cost and capacity of the generation resources and the revenue and quantity of the

consumer demand.
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There are a total of 5 power generating resources: three located at Node 1, and two located

at Node 2. Table 4.1 shows the marginal cost of operation, and the maximum generation

capacity of these resources. Note that there are more generating resources at Node 1, and

for each resource at Node 1, the cost of generating electricity is the same or less than the

corresponding resources at Node 2.

Table 4.1: Marginal cost and maximum capacity data for generating resources.

Supplier 1 (at Node 1) Marginal Cost ($/MWh) Maximum Capacity (MWh)

Resource 1 25 3000

Resource 2 25 3000

Resource 3 35 3000

Supplier 2 (at Node 2) Marginal Cost ($/MWh) Maximum Capacity (MWh)

Resource 4 25 3000

Resource 5 36 3000

Both Demand 1 and Demand 2 charge their customers a fixed rate of 100 $/MWh for electric

power, and their customers demand 5000 MWh. Finally, the maximum transmission capacity

is 2.5 GWh. It should be noted that this quantity is larger than maximum generation capacity

at either of the two nodes; so the transmission link should never be congested, or saturated,

as a result of physical limitations.

4.2 Marginal Cost Market

We now perform the action of a pool operator in the two-node network and calculate the

market clearing prices and market clearing quantities in order to dispatch electricity. To do

this we need to set values for the bids and offers of Demand 1, Demand 2, Supplier 1 and

Supplier 2. We will have entities in the market set their bids and offers at the marginal cost
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(or revenue) and maximum quantity available.

Table 4.2 shows the values of the bid and offer data into (4.1) and (4.2), as well as the

optimal quantities computed, and the profit earned by each entity in the market.

As expected, the cheaper generation resources of Supplier 1 at Node 1 are dispatched before

the more expensive resources of Supplier 2 at Node 2. A total of 7000 MWh are dispatched

from Supplier 1, 5000 MWh of these go to meet the demand at Node 1, the other 2000 MWh

are transmitted to Node 2. These 2000 MWh, along with the 3000 MWh from the cheapest

resource of Supplier 2, meet the 5000 MWh demand at Node 2.

Since the transmitted quantity of 2000 MWh was well under the maximum transmission

capacity of 2.5 GWh the market clearing prices at each node are the same; namely 35

$/MWh. This amount corresponds to the price of the most expensive generation resource

dispatched.

Because the transmission line is not congested, and thus the market clearing price at Node 1

and Node 2 are the same, the transmission line owner earns no revenue and makes no profit.

Since the market clearing price is small compared to the price Demand 1 and Demand

2 charge their customers, these entities accrue the most profit. However, Supplier 1 also

makes profit on its two inexpensive generation resources.
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Table 4.2: Marginal Cost Market Data and Results

Bid and Offer Input Data

Demand 1 Bid (pD1
, q̄D1

) = (5000 MWh, 100 $/MWh)

Demand 2 Bid (pD2
, q̄D2

) = (5000 MWh, 100 $/MWh)

Supplier 1 Offer (pS1
, q̄S1

) =

















25

25

35









$/MWh,









3000

3000

3000









MWh









Supplier 2 Offer (pS2
, q̄S2

) =











25

36




 $/MWh,






3000

3000




MWh






Transmission Maximum Capacity t̄ = 2.5GWh

Results

Quantity Demand 1 qD1
= 5000 MWh

Quantity Demand 2 qD2
= 5000 MWh

Quantity Supply 1 qT

S1
=

[

3000 3000 1000

]

MWh

Quantity Supply 2 qT

S2
=

[

3000 0

]

MWh

Transmitted Quantity t = 2000 MWh

MCP Node 1 π1 = 35 $/MWh

MCP Node 2 π2 = 35 $/MWh

Shadow Price Demand 1 ξD1
= 65 $/MWh

Shadow Price Demand 2 ξD2
= 65 $/MWh

Shadow Price Supply 1 zT

S1
=

[

10 10 0

]

$/MWh

Shadow Price Supply 2 zT

S2
=

[

10 0

]

$/MWh

Profit

Profit Transmission Owner 0 $

Profit Demand 1 325,000 $

Profit Demand 2 325,000 $

Profit Supplier 1 60,000 $

Profit Supplier 2 30,000 $
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4.3 The Two-Node Network Single Firm Problem

So far we have formulated the linear programs used by a pool operator to determine the

market clearing prices, the market clearing quantities, and dispatch electricity in this two-

node network. We now analyze a scenario where a vertically-integrated utility firm operates

within this simple two-node network. Here a firm is single agent that controls a collection

of market entities. We will analyze the effect on the market when this vertically-integrated

firm seeks to maximize its profit.

Let Firm 2 be a vertically-integrated utility located at Node 2. Firm 2 owns and operates

Supplier 2, Demand 2, and the transmission line. Therefore it has three sources of revenue:

revenue received from the generation and sale of electricity from Supplier 2, revenue received

from transmission line fees, and revenue received from the sale of electricity to Demand

2. Firm 2 thus has the ability to set the prices (and maximum quantities) of the offer of

Supplier 2 and the bid of Demand 2 into the market. In addition—and this will play a crucial

role—Firm 2 has the ability to set, or control, the maximum transmission capacity of the

transmission line.

The goal of Firm 2 is to maximize its total profit. To maximize Firm 2’s profit we will

construct a BLBP (similar to that discussed in Section 3, but with the structure of the two-

node network taken into account) where the crucial decision variables are the bids, offers,

and transmission capacities of the entities owned by Firm 2. We will assume, as we did in

Section 3, that the bids and offers of the other entities in the market are known to Firm 2

and are thus data into the BLBP.

The first step in constructing the BLBP is to formulate the objective function. The profit

of Firm 2 is given by

π2e
TqS2

− cT
S2

qS2
+ (π2 − π1)t + (rD2

− π2)qD2

19



Christopher Maes Tests for Bilinear Bilevel Programs November 27, 2007

Here cS2
∈ R|S2| is a vector whose entries correspond to the operating costs of Supplier

2’s generation resources, and rD2
∈ R is the revenue received by Demand 2 from its end

customers. The objective of maximizing Firm 2’s profit, along with the constraints from

(4.1) and (4.2), yields the following BLBP:

maximize (π2e
T − cT

S2
)qS2

+ (π2 − π1)t + (rD2
− π2)qD2

pD1
,q̄D1

,pS2
,q̄S2

,t̄,

qD1
,qD2

,qS1
,qS2

,t,

π1,π2,πt,ξD1
,ξD2

,zS1
,zS2

subject to

−eT qS1
+ t + qD1

≤ 0 π1 + ξD1
≥ pD1

−eT qS2
− t + qD2

≤ 0 π2 + ξD2
≥ pD2

0 ≤ qD1
≤ q̄D1

, −π1e + zS1
≥ −pS1

0 ≤ qD2
≤ q̄D2

, −π2e + zS2
≥ −pS2

0 ≤ qS1
≤ q̄S1

, πt ≥ π2 − π1

0 ≤ qS2
≤ q̄S2

, π1, π2 ≥ 0

0 ≤ t ≤ t̄, ξD1
, ξD2

, zS1
, zS2

, πt ≥ 0

pD1
qD1

+ pD2
qD2

− pT
S1

qS1
− pT

S2
qS2

≥ q̄D1
ξD1

+ q̄D2
ξD2

+ q̄T
S1

zS1
+ q̄T

S2
zS2

+ t̄πt

0 ≤ pD2
≤ rD2

q̄D2
≥ qmin

D2

0 ≤ cS2
≤ pS2

0 ≤ q̄S2
≤ qmax

S2

0 ≤ t̄ ≤ tmax

(4.3)

The key decision variables in this problem are the bids, offers, and transmission capacities,

controlled by Firm 2; these are: Demand 2’s bid (pD2
, q̄D2

), Supplier 2’s offer (pS2
, q̄S2

), and

the maximum transmission capacity t̄. The optimal values of these variables will determine

what Firm 2 gives to the pool operator. The data for this problem are the bids and offers of
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the other entities in the market: Demand 1’s bid (pD1
, q̄D1

), and Supplier 1’s offer (pS1
, q̄S1

).

Secondary variables for this problem, which arise from including the primal and dual linear

program, are: the market quantities qD1
, qD2

,qS1
,qS2

, the transmitted quantity t, the price

of transmission πt, the market clearing price at each node π1 and π2, and the shadow prices

ξD1
, ξD2

, zS1
, and zS2

.

Because the bid, offer, and maximum transmission capacity are decision variables in the

BLBP we need additional constraints and data to ensure that these variables do not violate

physical limitations. The maximum transmission capacity, t̄, that Firm 2 reports to the pool

operator must not exceed the physical capacity of the line, tmax, which is 2.5 GWh. The

price of Supplier 2’s offer into the market, pS2
, should be more than the operating cost of its

generation resources, cS2
. The maximum generation quantity of Supplier 2’s offer into the

market, q̄S2
, must not exceed the maximum physical generation capacity of its generation

resources, qmax
S2

. The price of Demand 2’s bid into the market, pD2
, should not exceed the

revenue generated from customer sales, rD2
. The maximum quantity of Demand 2’s bid, q̄D2

,

must meet or exceed the minimum quantity of electricity demanded by its customers, qmin
D2

.

4.4 Experimental Results for the Two-Node Network Single Firm

Problem

With the formulation complete, we now turn to numerically computing the bid, offer, and

maximum transmission quantities that optimize Firm 2’s profit.

To do this we must first specify the bids and offers of the other entities into the market—here

we have all other entities offer (bid) marginal cost (revenue) into the market at the maximum

quantity. In addition, we must specify the physical data associated with the problem. Table

4.3 specifies the values of all data in the BLBP.
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Table 4.3: Input data for Two-Node Network Single Firm BLBP.

Bids and Offers

Demand 1 Bid (pD1
, q̄D1

) = (100 $/MWh, 5000 MWh)

Supplier 1 Offer (pS1
, q̄S1

) =

















25

25

35









$/MWh,









3000

3000

3000









MWh









Physical Data

Maximum Physical Transmission Capacity tmax = 2.5 GWh

Supplier 2 Operating Cost cT

S2
=

[

25 36

]

$/MWh

Supplier 2 Maximum Generation Capacity qmaxT

S2
=

[

3000 3000

]

MWh

Demand 2 Consumer Revenue rD2
= 100 $/MWh

Demand 2 Minimum Consumer Demand qmin

D2
= 5000 MWh

With the problem completed specified, we use the fully nonlinear solver Snopt [GMS97]

to solve the nonlinear formulation of the BLBP. Snopt was designed to handle large-scale

nonlinear optimization problems with a large number of nonlinear constraints. This problem,

with merely 24 variables and 15 constraints (of these constraints, only a single is nonlinear),

is considered small. As expected, Snopt quickly converges to a local, and in this case the

global, optimum, performing only 39 minor iterations and 15 function evaluations.

Table 4.4 shows the optimal bid, offer, and maximum transmission quantity, computed by

Snopt, as well as the profit for Firm 2 and the individual entities in the market.

These results are very interesting. The first value to notice is the maximum transmission

quantity, t̄ = 1000 MWh. Although, the transmission line has a maximum physical capacity

of 2.5 GWh, Firm 2 has chosen to report a capacity of merely 1000 MWh. This causes the

transmission line to be congested.

By introducing this artificial congestion Firm 2 is able to limit the amount of inexpensive
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Table 4.4: Results for Two-Node Network Single Firm BLBP.

Firm 2 Bids and Offers

Bid Demand 2 (pD2
, q̄D2

) = (100 $/MWh, 5000 MWh)

Offer Supplier 2 (pS2
, q̄S2

) =











100

100




 $/MWh,






3000

1000




 MWh






Maximum Transmission Quantity t̄ = 1000 MWh

Secondary Variables

Quantity Demand 1 qD1
= 5000 MWh

Quantity Demand 2 qD2
= 5000 MWh

Quantity Supply 1 qT

S1
=

[

3000 3000 0

]

MWh

Quantity Supply 2 qT

S2
=

[

3000 1000

]

MWh

Transmitted Quantity t = 1000 MWh

Transmission Price πt = 75 $/MWh

MCP Node 1 π1 = 25 $/MWh

MCP Node 2 π2 = 100 $/MWh

Shadow Price Demand 1 ξD1
= 0 $/MWh

Shadow Price Demand 2 ξD2
= 0 $/MWh

Shadow Price Supply 1 zT

S1
=

[

0 0 0

]

$/MWh

Shadow Price Supply 2 zT

S2
=

[

0 0

]

$/MWh

Profit

Profit Firm 2 364, 000 $

Profit Demand 1 375,000 $

Profit Supply 1 0 $

Profit Demand 2 0 $

Profit Supplier 2 289,000 $

Profit Transmission Owner 75,000
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energy transferred from Node 1 to Node 2. Limiting the transmitted quantity allows the

price at Node 1, π1, to differ from the price at Node 2, π2. This has two effects: first, it

allows Supplier 2 to increase the price of energy at Node 2, and thus increase the profit

of Supplier 2, second, it allows the transmission line owner to reap congestion fees. The

congestion fees go into effect when t hits its upper bound, t̄, causing the dual variable πt to

be nonzero. Since πt = π2 − π1, the transmission line owner will have greater profit when π2

is larger. This also explains why Firm 2 has chosen to place such a high bid of 100 $/MWh

for Demand 2, thus allowing a larger price at Node 2, but giving up all the profit of Demand

2.

Because of this artificial congestion, Firm 2 is able to make a profit on the quantity of

inexpensive energy being transmitted from Supplier 1. At the same time, by separating the

prices of the two nodes, Firm 2 is not allowing Supplier 1 to raise the price of electricity

at Node 1—the price Supplier 1 receives for generating electricity—even in the presence of

increased demand from Node 2.

5 A Set of BLBPs arising in the Two-Node Network

There are a total of five market entities in the Two-Node Network: Demand 1, Supply 1,

Transmission, Demand 2, and Supply 2. These entities are depicted in Figure 5.1.

Node 1 Node 2
T

S1 S2

D1 D2

Figure 5.1: A diagram of the two-node network. The five market entities D1, S1, T, S2 and

D2 are labeled.
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We have solved the Single Firm Problem when the firm is a vertical utility located at Node

2, controlling Demand 2, Supply 2, and Transmission. By considering firms composed of

other permutations of the five market entities it is possible to generate different instances of

the Single Firm Problem. There are 31 different instances of possible single-firm ownership

of the five entities; from these 31 we have selected eight problems of interest from several

representative problem categories. These eight problems are shown in Table 5.1. For example

in problem 5 we consider a firm located at Node 1 which controls both supply (Supplier 1)

and demand (Demand 1). Note problem 8, that of a vertically integrated firm located at

Node 2, is the problem solved in the previous section.

Table 5.1: A set of 8 problems. Entities under the firm’s control in the problem are boxed.

Problem Category # Market Entities

Demand Import 1 D1 D2 T S1 S2

Demand Export 2 D1 D2 T S1 S2

Generation Import 3 D1 D2 T S1 S2

Generation Export 4 D1 D2 T S1 S2

Demand & Generation
5 D1 D2 T S1 S2

6 D1 D2 T S1 S2

Vertical Utility Export 7 D1 D2 T S1 S2

Vertical Utility Import 8 D1 D2 T S1 S2
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6 Numerical Experiments on a set of BLBPs

To analyze the difficulty of solving BLBPs we perform a set of numerical experiments. We

take the eight problems described in the previous section and attempt to solve each of them

with the nonlinear solvers Snopt [GMS97] and Ipopt [WB06].

These solvers are, of course, designed only to find a solution that is locally optimal. In

general, when maximizing a firm’s profit, we seek the global maximum. The point of these

numerical experiments is to obtain an estimate of the number of local optimum, and how

much these local optimum differ from the global optimum on these example BLBPs.

If there are multiple local optimum then the solution to which a solver converges depends on

the starting point supplied. Thus, we supply three different starting points to the solvers:

0, the point with all variables set to zero, e, the point with all variables set to one, and the

point with all variables set to their values at the marginal cost solution. That is, we choose

the final starting point by computing the solution to the primal and dual linear programs

with all entities in the market bidding marginal cost. The values for the variables at this

point are given in Table 4.2.

Tables 6.1, 6.2, and 6.3 show the status of the solver and several quantities of interest in the

solutions of Snopt and Ipopt computed from the 0, e, and marginal cost starting points.

A solver reports a status of: Solved if the final point satisfies the first order optimality con-

ditions, Failed if the current point could not be improved and does not satisfy the optimality

conditions, and Infeasible if the solver is not able to find a feasible point after a fixed number

of iterations. The default options were used for both Snopt and Ipopt. We do not report

iterations or computational time as these were both quite small; the entire set of BLBPs was

solved by both Snopt and Ipopt in under a second.

There are several conclusions to be drawn from this data. Perhaps the first thing to note
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Table 6.1: Solutions of Snopt and Ipopt computed from the 0 starting point.

Problem Solver Status t (MWh) t̄ (MWh) π1 ($/MWh) π2 ($/MWh) Profit ($)

1 Snopt Solved 0 0 25 0 -1.65681e-10

1 Ipopt Solved 2000 2499.95 35 35 325000

2 Snopt Solved 1000 1000 25 36 386000

2 Ipopt Solved 1000 1000 25 36 386000

3 Snopt Solved 1000 1000 25 100 364000

3 Ipopt Solved 1000 1000 25 100 364000

4 Snopt Solved 0 0 100 36 375000

4 Ipopt Solved 0 0.00991981 100 36 375001

5 Snopt Solved 2000 2500 36 36 387000

5 Ipopt Solved 2000 2500 36 36 387000

6 Snopt Solved 0 2500 25 0 0

6 Ipopt Solved 2000 2500 34.9881 34.9881 355024

7 Snopt Solved 1000 1000 25 36 386000

7 Ipopt Solved 2000 2499.62 36 36 387000

8 Snopt Solved 0 0 25 0 0

8 Ipopt Solved 1000 1000 25 84.3839 364000
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Table 6.2: Solutions of Snopt and Ipopt computed from the e starting point.

Problem Solver Status t (MWh) t̄ (MWh) π1 ($/MWh) π2 ($/MWh) Profit ($)

1 Snopt Solved 1000 1000 25 25 300000

1 Ipopt Solved 1000 1000 25 36 331000

2 Snopt Solved 2000 2000 25 36 22000

2 Ipopt Solved 1000 1000 25 36 386000

3 Snopt Solved 1000 1000 25 100 300000

3 Ipopt Solved 1000 1000 25 100 364000

4 Snopt Solved 0 0 100 36 375000

4 Ipopt Solved 0 0.0274558 100 36 375000

5 Snopt Solved 1000 2500 36 36 386000

5 Ipopt Solved 2000 2500 36 36 387000

6 Snopt Failure — — — — —

6 Ipopt Solved 2000 2500 34.9952 34.9952 355010

7 Snopt Solved 2000 2000 36 36 387000

7 Ipopt Solved 2000 2000.68 36 36 387000

8 Snopt Failure — — — — —

8 Ipopt Solved 1000 1000 25 99.6845 364000
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Table 6.3: Solutions of Snopt and Ipopt computed from the marginal cost solution.

Problem Solver Status t (MWh) t̄ (MWh) π1 ($/MWh) π2 ($/MWh) Profit ($)

1 Snopt Solved 2000 2500 35 35 325000

1 Ipopt Solved 2000 2498.5 35 35 325000

2 Snopt Solved 2000 2500 35 35 325000

2 Ipopt Solved 2000 2000 35 36 327000

3 Snopt Solved 2000 2500 35 35 30000

3 Ipopt Solved 2000 2000 35 100 355000

4 Snopt Solved 2000 2500 36 36 67000

4 Ipopt Solved 2000 2492.41 36 36 67000

5 Snopt Solved 2000 2500 36 36 387000

5 Ipopt Solved 2000 2500 36 36 387000

6 Snopt Solved 2000 2500 35 35 355000

6 Ipopt Solved 2000 2500 32.7008 32.7008 359598

7 Snopt Infeasible — — — — —

7 Ipopt Solved 2000 2000.72 36 36 387000

8 Snopt Solved 2000 2500 35 35 355000

8 Ipopt Solved 2000 2002.19 34.9999 34.9999 355000
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is that for every problem, with the exceptions of problems 5 and 7, both solvers compute

different values for the firm’s profit when given different starting points. Problems 5 and 7

are exceptions because in these problems the firm is located completely at Node 1 and thus

the effects of the transmission line do not come into play. Thus, we see that indeed these

BLBPs do contain multiple local optimum.

When starting from the 0 point Snopt computes solutions with a market clearing price of

zero at Node 2 for problems 1, 6 and 8. As a result no electricity is transmitted to Node 2,

and the bids of Demand 2 and offers of Supplier 2 are not accepted. Therefore, the firms in

these problems earn no profit. Note, however, that it is possible for these firms to earn quite

a large profit.

These zero profit solutions disappear when starting from the point e. However, from this

starting point Snopt fails to compute a solution for problems 6 and 8.

From this data we see that for problems 1, 2, 3 and 8, it is advantageous for the firm

controlling the transmission line to force the line to become artificially congested. When

started from points 0 or e both Snopt and Ipopt converge to solutions with artificial

congestion. However, when started from the marginal cost solution, both solvers converge

to solutions with no artificial congestion. As a result, profits computed when starting from

the marginal cost solution tend to be lower. In addition, when starting from the marginal

cost solution, Snopt is unable to find a feasible point for problem 7.
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6.1 A Homotopy Method

In an effort to obtain the global optimum, and avoid the problems associated with a single

starting point we employ a homotopy method. In the homotopy method we solve a sequence

of problems in the form

BLBP(µ) = maximize f(p,q, π)

subject to Aq = b, AT
π + s = p

qT s = µ (6.1)

0 ≤ q, s.

Here µ > 0 is a parameter that controls the duality gap of, or the precision to which we

solve, the lower-level linear program. Let p⋆(µ),q⋆(µ) denote a locally optimal solution to

BLBP(µ). In the homotopy method, we first fix a value of µk > 0, solve BLBP(µk) to some

loose precision, and then set µk+1 = ρµk, for ρ < 1. The values of p⋆(µk) and q⋆(µk) are used

as the starting point for the the new problem BLBP(µk+1). After n steps, when µn < ǫ, the

solution p⋆(µn),q⋆(µn) satisfies the nonlinear constraints of the original problem to within

a tolerance ǫ.

When solving this sequence of problems we hope to trace out a continuous curve to the

solution of the original problem. Of course, because these problems are nonconvex we cannot

be assured such a curve is continuous or even exists. Table 6.4 shows the results of applying

the homotopy method with the solvers Snopt and Ipopt. We use an initial value of µ0 = 1,

set ρ = 1/2 and solve n = 21 problems to achieve a tolerance of ǫ = 1e−6.

The results of the homotopy method are encouraging. With Ipopt the profits obtained via

the homotopy method are as good or better than those obtained from all other starting points

on all problems (except for problem 1). Furthermore, when using the homotopy method
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Table 6.4: Solutions of Snopt and Ipopt computed with the Homotopy Method

Problem Solver Status t (MWh) t̄ (MWh) π1 ($/MWh) π2 ($/MWh) Profit ($)

1 Snopt Solved 1000 1000.05 25 25 300000

1 Ipopt Solved 2000 2498.5 35 35 325000

2 Snopt Solved 1000 1000 25 36 386000

2 Ipopt Solved 1000 1000 25 36 386000

3 Snopt Solved 1000 1000 25 100 364000

3 Ipopt Solved 1000 1000 25 100 364000

4 Snopt Solved 0 0 100 36 375000

4 Ipopt Solved 2.7721e-09 1264.14 100 36 375002

5 Snopt Solved 1000 2500 36 36 386000

5 Ipopt Solved 2000 2500 36 36 387000

6 Snopt Solved 1000 2500 25 25 300000

6 Ipopt Solved 2000 2500 35 35 355000

7 Snopt Solved 1000 1000 25 36 386000

7 Ipopt Solved 2000 2000.04 36 36 387000

8 Snopt Solved 1000 1000 25 100 300000

8 Ipopt Solved 1000 1000 25 71.619 364000
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both solvers correctly identify solutions that contain artificial congestion. In addition, with

the homotopy method, Snopt does not get stuck at zero profit local maximums, fail, or

incorrectly classify problem 7 as infeasible.

6.2 Alternative Optimum

Another crucial aspect of these BLBPs, revealed by the data in Tables 6.1, 6.2, 6.3, and 6.4,

is the presence of alternative optimal solutions. Here, we define alternative optimal solutions

to be two or more solutions with the same objective value but different values for the primary

decision variables (i.e., the nodal prices, or the bids and offers that the firm controls).

The most prominent example of alternative optimum occurs in problem 8. In Section 4,

starting points 0, e, and the homotopy method we calculate a profit of 364000 dollars. Each

of these four calculations yield different values for the market clearing price at Node 2, π2:

100 $/MWh, 84.4 $/MWh, 99.6 $/MWh, and 71.6 $/MWh.

This can be explained by examining the objective function for problem 8,

(π2e
T − cT

S2
)qS2

︸ ︷︷ ︸

Supplier 2

+ (π2 − π1)t
︸ ︷︷ ︸

Transmission

+ (rD2
− π2)qD2

︸ ︷︷ ︸

Demand 2

.

Note that Firm 2 has three different sources of profit; profit made from Supplier 2, the

transmission line, and from Demand 2. Each of these three terms depend on the market

clearing price, π2. By choosing its bids and offers to inflate π2 Firm 2 earns profit from

Supplier 2 and Transmission, at a loss of profit from Demand 2. By choosing its bids and

offers to deflate π2 Firm 2 earns profit from Demand 2, at a loss of profit from Supplier 2

and Transmission. These three terms balance each other, and thus there is a whole set of

offer and bid combinations for Firm 2, all of which yield a profit of 364000 dollars.
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7 Conclusions

In this work we have formulated and solved several BLBPs arising from electric power mar-

kets. These BLBPs all have a very similar structure. As there name suggests, they contain

a bilinear, and hence nonlinear and nonconvex objective function, and a single bilinear con-

straint arising from the optimality conditions of the lower-level linear program. In the past

BLBPs have been solved by approximating these bilinear terms in the objective and con-

straints, and using special ordered sets to transform the BLBP into a linear program. This

work shows that there are no inherit numerical difficulties or other issues in retaining the

nonlinear objective and constraints and solving these BLBPs with a fully nonlinear solver

like Snopt or Ipopt.

Unfortunately, these nonlinear solvers will not always compute the global maximum (nor

should we expect them to). For a reasonable solution with an accurate estimate of the profit

to be obtained multiple starting points must be used, or these nonlinear solvers need to

be coupled with global optimization techniques such as homotopy methods or branch and

bound algorithms.

This worked used nonlinear solvers to solve the nonlinear formulation of a BLBP. Future work

should examine solvers, such as Miles and Path, which explicitly deal with complementarity

constraints, and investigate their performance on these BLBPs. Complementarity pivoting

algorithms should also be investigated.

People solve BLBPs every day armed with merely pencil and paper; usually they do this

by checking a small number of points and reasoning about the maximum profit that can be

obtained. Future work on algorithms for solving BLBPs needs to be guided by this intuition

and reasoning.
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